Uczenie maszynowe
Spark. Rozproszone uczenie maszynowe na dużą skalę. Jak korzystać z MLlib, TensorFlow i PyTorch
- Szczegóły
- Kategoria: Uczenie maszynowe
Jeśli chcesz dostosować swoją pracę do większych zbiorów danych i bardziej złożonych kodów, potrzebna Ci jest znajomość technik rozproszonego uczenia maszynowego. W tym celu warto poznać frameworki Apache Spark, PyTorch i TensorFlow, a także bibliotekę MLlib. Biegłość w posługiwaniu się tymi narzędziami przyda Ci się w całym cyklu życia oprogramowania - nie tylko ułatwi współpracę, ale również tworzenie powtarzalnego kodu.
Dzięki tej książce nauczysz się holistycznego podejścia, które zdecydowanie usprawni współpracę między zespołami. Najpierw zapoznasz się z podstawowymi informacjami o przepływach pracy związanych z uczeniem maszynowym przy użyciu Apache Spark i pakietu PySpark. Nauczysz się też zarządzać cyklem życia eksperymentów dla potrzeb uczenia maszynowego za pomocą biblioteki MLflow.
Z kolejnych rozdziałów dowiesz się, jak od strony technicznej wygląda korzystanie z platformy uczenia maszynowego. W książce znajdziesz również opis wzorców wdrażania, wnioskowania i monitorowania modeli w środowisku produkcyjnym.
Najciekawsze zagadnienia:
- cykl życia uczenia maszynowego i MLflow,
- inżynieria cech i przetwarzanie wstępne za pomocą Sparka,
- szkolenie modelu i budowa potoku,
- budowa systemu danych z wykorzystaniem uczenia głębokiego,
- praca TensorFlow w trybie rozproszonym,
- skalowanie systemu i tworzenie jego wewnętrznej architektury.
Właśnie takiej książki społeczność Sparka wyczekuje od dekady!
Andy Petrella,
autor książki Fundamentals of Data Observability
Adi Polak jest doświadczoną inżynierką, wiceprezeską do spraw programistów w firmie Treeverse, członkinią wielu grup eksperckich. Bierze udział w organizowaniu takich konferencji jak Data + AI Summit by Databricks, Current by Confluent i Scale by the Bay. Doświadczenie w uczeniu maszynowym zdobywała, prowadząc badania dla wielu firm z listy Fortune 500.
- Uczenie maszynowe w języku R. Tworzenie i doskonalenie modeli - od przygotowania danych po dostrajanie, ewaluację i pracę z big data. Wydanie IV - [05 czerwiec 2024]
- Wnioskowanie i związki przyczynowe w Pythonie. Nowoczesne uczenie maszynowe z wykorzystaniem bibliotek DoWhy, EconML, PyTorch i nie tylko - [28 maj 2024]
- Uczenie maszynowe w Pythonie. Receptury. Od przygotowania danych do deep learningu. Wydanie II - [24 kwiecień 2024]
- Eksploracja danych za pomocą Excela. Metody uczenia maszynowego krok po kroku - [13 luty 2024]
- Analityk danych. Przewodnik po data science, statystyce i uczeniu maszynowym - [26 październik 2023]