Uczenie maszynowe
Uczenie maszynowe. Elementy matematyki w analizie danych
- Szczegóły
- Kategoria: Uczenie maszynowe
Na styku matematyki i informatyki
Uczenie maszynowe (ML) i sztuczna inteligencja (AI). Obok komputerów kwantowych to dwa główne, gorące tematy we współczesnej informatyce. Oba nieco tajemnicze, futurystyczne i przede wszystkim wymagające posiadania dość sporej wiedzy i umiejętności matematycznych.
Stąd podręczniki akademickie poświęcone sztucznej inteligencji i uczeniu maszynowemu zwykle są grube, ciężkie i naszpikowane detalami. Niesprzyjające szybkiej nauce i w rzeczywistości wcale nie takie... podręczne.
Inaczej jest z tą niewielkich rozmiarów książką. Jej autor przedstawia tematy związane z AI i ML z naciskiem na matematykę, tłumaczy jednak wszystko krok po kroku - tak by czytelnikom było łatwiej je zrozumieć. Zagadnienia matematyczne są tu objaśniane o tyle, o ile jest to konieczne dla opanowania konkretnych treści z zakresu uczenia maszynowego.
Sztuczna inteligencja. Nowe spojrzenie. Wydanie IV. Tom 2
- Szczegóły
- Kategoria: Uczenie maszynowe
Praktycznie codziennie korzystamy z osiągnięć sztucznej inteligencji. Mimo to jej potencjał wciąż jest zagadką: nie wiemy, gdzie leżą granice jej rozwoju i jakie jeszcze technologie przyniesie nam ta relatywnie młoda dziedzina nauki. Równocześnie niektóre zastosowania sztucznej inteligencji budzą niepokój i zmuszają do zadawania trudnych pytań. Jakakolwiek próba odpowiedzi jednak wymaga wiedzy o tym, czym w istocie jest sztuczna inteligencja i jakie są jej ograniczenia.
To drugi tom klasycznego podręcznika wiedzy o sztucznej inteligencji. Podobnie jak w wypadku pierwszej części, lektura tej książki nie wymaga wybitnej znajomości tematu. Dzięki przejrzystości tekstu i umiejętnemu unikaniu nadmiernego formalizmu można w dość łatwy sposób zrozumieć kluczowe idee i koncepcje nauki o sztucznej inteligencji. Najnowsze technologiczne osiągnięcia zostały pokazane na tle rozwijającej się wiedzy, również z innych dziedzin inżynierii.
Sztuczna inteligencja. Nowe spojrzenie. Wydanie IV. Tom 1
- Szczegóły
- Kategoria: Uczenie maszynowe
Sztuczna inteligencja budzi zachwyt i kontrowersje. W porównaniu z innymi gałęziami nauki jest stosunkowo młoda: liczy około siedemdziesięciu lat, mimo że czerpie ze znacznie starszych idei. Jednak błyskawiczny rozwój sztucznej inteligencji i przeobrażanie osiągnięć nauki w działające technologie sprawiają, że wyrobienie poglądu na całokształt tej dziedziny jest trudnym zadaniem. Warto więc spojrzeć na historię rozwoju sztucznej inteligencji z perspektywy jej współczesnych osiągnięć i dzięki temu lepiej zrozumieć, czym ta nauka jest w swojej istocie i dokąd podąża.
Oto pierwszy tom dzieła, które stanowi inspirujące spojrzenie na sztuczną inteligencję. Jego zrozumienie nie wymaga wybitnej znajomości informatyki i matematyki. Książka jest wspaniałą syntezą wczesnych i późniejszych koncepcji, a także technik, przeprowadzoną we frameworku idei, metod i technologii. Zawiera ogrom rzetelnej wiedzy przekazanej w niezbyt sformalizowany sposób.
Matematyka w uczeniu maszynowym
- Szczegóły
- Kategoria: Uczenie maszynowe
Uczenie maszynowe staje się wszechobecne. Dzięki coraz lepszym narzędziom służącym do tworzenia aplikacji szczegóły techniczne związane z obliczeniami i modelami matematycznymi są często pomijane przez projektantów. Owszem, to wygodne podejście, ale wiąże się z ryzykiem braku świadomości co do wszystkich konsekwencji wybranych rozwiązań projektowych, szczególnie ich mocnych i słabych stron. A zatem bez ugruntowanych podstaw matematyki nie można mówić o profesjonalnym podejściu do uczenia maszynowego.
Ten podręcznik jest przeznaczony dla osób, które chcą dobrze zrozumieć matematyczne podstawy uczenia maszynowego i nabrać praktycznego doświadczenia w używaniu pojęć matematycznych. Wyjaśniono tutaj stosowanie szeregu technik matematycznych, takich jak algebra liniowa, geometria analityczna, rozkłady macierzy, rachunek wektorowy, optymalizacja, probabilistyka i statystyka.
Inżynieria danych na platformie AWS. Jak tworzyć kompletne potoki uczenia maszynowego
- Szczegóły
- Kategoria: Uczenie maszynowe
Platforma Amazon Web Services jest uważana za największą i najbardziej dojrzałą chmurę obliczeniową. Zapewnia bogaty zestaw specjalistycznych narzędzi ułatwiających realizację projektów z zakresu inżynierii danych i uczenia maszynowego. W ten sposób inżynierowie danych, architekci i menedżerowie mogą szybko zacząć używać danych do podejmowania kluczowych decyzji biznesowych. Uzyskanie optymalnej efektywności pracy takich projektów wymaga jednak dobrego rozeznania w możliwościach poszczególnych narzędzi, usług i bibliotek.
Dzięki temu praktycznemu przewodnikowi szybko nauczysz się tworzyć i uruchamiać procesy w chmurze, a następnie integrować wyniki z aplikacjami. Zapoznasz się ze scenariuszami stosowania technik sztucznej inteligencji: przetwarzania języka naturalnego, rozpoznawania obrazów, wykrywania oszustw, wyszukiwania kognitywnego czy wykrywania anomalii w czasie rzeczywistym.
Więcej artykułów…
- Głębokie uczenie. Wprowadzenie
- Głębokie uczenie przez wzmacnianie. Praca z chatbotami oraz robotyka, optymalizacja dyskretna i automatyzacja sieciowa w praktyce. Wydanie II
- Python. Uczenie maszynowe w przykładach. TensorFlow 2, PyTorch i scikit-learn. Wydanie III
- Sztuczna inteligencja w finansach. Używaj języka Python do projektowania i wdrażania algorytmów AI