Uczenie maszynowe
Spark. Rozproszone uczenie maszynowe na dużą skalę. Jak korzystać z MLlib, TensorFlow i PyTorch
- Szczegóły
- Kategoria: Uczenie maszynowe
Jeśli chcesz dostosować swoją pracę do większych zbiorów danych i bardziej złożonych kodów, potrzebna Ci jest znajomość technik rozproszonego uczenia maszynowego. W tym celu warto poznać frameworki Apache Spark, PyTorch i TensorFlow, a także bibliotekę MLlib. Biegłość w posługiwaniu się tymi narzędziami przyda Ci się w całym cyklu życia oprogramowania - nie tylko ułatwi współpracę, ale również tworzenie powtarzalnego kodu.
Dzięki tej książce nauczysz się holistycznego podejścia, które zdecydowanie usprawni współpracę między zespołami. Najpierw zapoznasz się z podstawowymi informacjami o przepływach pracy związanych z uczeniem maszynowym przy użyciu Apache Spark i pakietu PySpark. Nauczysz się też zarządzać cyklem życia eksperymentów dla potrzeb uczenia maszynowego za pomocą biblioteki MLflow.
Uczenie maszynowe w języku R. Tworzenie i doskonalenie modeli - od przygotowania danych po dostrajanie, ewaluację i pracę z big data. Wydanie IV
- Szczegóły
- Kategoria: Uczenie maszynowe
Uczenie maszynowe polega na przekształcaniu danych w informacje ułatwiające podejmowanie decyzji. W erze big data umożliwia pracę z ogromnymi strumieniami napływających informacji - pozwala na ich zrozumienie i efektywne zastosowanie. Ulubionym narzędziem analityków danych jest bezpłatne wieloplatformowe środowisko programowania statystycznego o nazwie R, oferujące potężne, intuicyjne i łatwe do opanowania narzędzia.
To czwarte, zaktualizowane wydanie znakomitego przewodnika poświęconego zastosowaniu uczenia maszynowego do rozwiązywania rzeczywistych problemów w analizie danych. Dzięki książce dowiesz się wszystkiego, co trzeba wiedzieć o wstępnym przetwarzaniu danych, znajdowaniu kluczowych spostrzeżeń, prognozowaniu i wizualizowaniu odkryć.
Wnioskowanie i związki przyczynowe w Pythonie. Nowoczesne uczenie maszynowe z wykorzystaniem bibliotek DoWhy, EconML, PyTorch i nie tylko
- Szczegóły
- Kategoria: Uczenie maszynowe
W uczeniu maszynowym odkrywanie związków przyczynowych daje możliwości, jakich nie można uzyskać tradycyjnymi technikami statystycznymi. Najnowsze trendy w programowaniu pokazują, że przyczynowość staje się kluczowym zagadnieniem dla generatywnej sztucznej inteligencji. Niezbędna okazuje się więc znajomość grafów przyczynowych i zapytań konfrontacyjnych.
Dzięki tej książce łatwo przyswoisz teoretyczne podstawy i zaczniesz je płynnie wdrażać w rzeczywistych scenariuszach. Dowiesz się, w jaki sposób myślenie przyczynowe ułatwia rozwiązywanie problemów, i poznasz pojęcia Pearla, takie jak strukturalny model przyczynowy, interwencje, kontrfakty itp. Każde zagadnienie zostało dokładnie wyjaśnione i opatrzone zbiorem praktycznych ćwiczeń z kodem w Pythonie. Nauczysz się także implementować poszczególne modele i zrozumiesz, czym się kierować przy wyborze technik i algorytmów do rozwiązywania konkretnych scenariuszy przyczynowych.
Uczenie maszynowe w Pythonie. Receptury. Od przygotowania danych do deep learningu. Wydanie II
- Szczegóły
- Kategoria: Uczenie maszynowe
W ciągu ostatnich lat techniki uczenia maszynowego rozwijały się z niezwykłą dynamiką, rewolucjonizując pracę w różnych branżach. Obecnie do uczenia maszynowego najczęściej używa się Pythona i jego bibliotek. Znajomość najnowszych wydań tych narzędzi umożliwia efektywne tworzenie wyrafinowanych systemów uczących się.
Oto zaktualizowane wydanie popularnego przewodnika, dzięki któremu skorzystasz z ponad dwustu sprawdzonych receptur bazujących na najnowszych wydaniach bibliotek Pythona. Wystarczy, że skopiujesz i dostosujesz kod do swoich potrzeb. Możesz też go uruchamiać i testować za pomocą przykładowego zbioru danych.
W książce znajdziesz receptury przydatne do rozwiązywania szerokiego spektrum problemów, od przygotowania i wczytania danych aż po trenowanie modeli i korzystanie z sieci neuronowych. W ten sposób wyjdziesz poza rozważania teoretyczne czy też matematyczne koncepcje i zaczniesz tworzyć aplikacje korzystające z uczenia maszynowego.
Eksploracja danych za pomocą Excela. Metody uczenia maszynowego krok po kroku
- Szczegóły
- Kategoria: Uczenie maszynowe
Biznesowa analiza danych jest ważną umiejętnością, jednak większość służących do tego narzędzi informatycznych nie zapewnia wglądu w mechanizmy swojej pracy. Utrudnia to zrozumienie, na czym polega eksploracja danych. W wypadku niezbyt dużych zbiorów danych znakomitym rozwiązaniem jest program MS Excel. Udostępnia on wyspecjalizowane funkcje, dzięki którym analizę i wizualizację danych można wykonywać krok po kroku, zapoznając się z każdym etapem tego procesu.
Tę książkę docenią wszyscy zainteresowani eksploracją danych i uczeniem maszynowym, którzy chcieliby pewnie poruszać się w świecie nauki o danych. Pokazano tu, w jaki sposób Excel pozwala zobrazować proces ich eksplorowania i jak działają poszczególne techniki w tym zakresie.
Więcej artykułów…
- Analityk danych. Przewodnik po data science, statystyce i uczeniu maszynowym
- Przetwarzanie języka naturalnego w praktyce. Przewodnik po budowie rzeczywistych systemów NLP
- Podręcznik architekta rozwiązań. Poznaj reguły oraz strategie projektu architektury i rozpocznij niezwykłą karierę. Wydanie II
- Uczenie maszynowe z użyciem Scikit-Learn, Keras i TensorFlow. Wydanie III